
ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

REMARKS
The previous release of the arozos is named “ArOZ Online System” or “ArOZ Online Beta”
(AOB). For information and documentation for the beta version of this system, please read
the “ArOZ Online Distributed Cloud System Documentation” instead.

You can classify the difference between these two systems by identifying the
programming language of the system.

Version Programming Language File Extension

ArOZ Online Beta PHP5 / PHP7 .php

ArOZ OS (ArOZ Online 1.0) Go .go

ArOZ OS is written as “arozos” in the current documentation for simplicity and easy to
read purposes.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Table of Contents

Arozos Cloud Desktop Operating System Documentation 1

REMARKS 2

Table of Contents 3

Introduction 7
Aim and Objective of the project 7
Naming Scheme 7

Stage Naming 7
Version Naming 7

Version Code 8
Release Code 8

System Usage 8

Terminology 10

System Requirement 10
Hardware 10
Software 11
Clients / Browsers 11
Network 11

System Overview 12
Summary 12

Folder Structure 12
Data Structure 12

Application Structures 12
WebApp Structures 13
Subservice Structures 13

Abstraction Structure 15
User Interface Structure 16

Web Desktop Interface 16
Mobile Desktop Interface 17
Grid Menu Interface, Deprecated 18
IMUS Multi System Booting Interface (MSBI / IMSB), Deprecated 19

System Modules 19
ArOZ Gateway Interface (AGI) 19
Advance Package Tool (APT) 20
Authentication (Auth) 20
Console 20
Database 20
Disk 20

Diskmg 20

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

DiskSmart 21
SortFile 22
Remarks 23

File System 23
Hidden 23
Metadata 24
Renderer 24
File System (Core) 24

Virtual File System Handler 24
File Ownership Tracker 25

Device Mounting Handler 25
Modules 25
Network 26

MDNS 26
SSDP 26
UPNP 26
WiFi 27
Reverse Proxy 27

Permission 27
Permission Router (Prouter) 28
Quota Manager (Quota) 28
Share 29
Storage 30

Storage Pools 31
FTP Storage 31

Connecting FTP under Windows 32
WebDAV Storage 33

Setup WebDAV On Windows (Non TLS Mode) 33
Setup WebDAV On Windows (TLS mode) 35
Setup WebDAV On MacOS (TLS and non TLS) 36

Subservices 39
User 39

System Components 40
Desktop 40

Creating New Files / Folder 40
Creating Shortcuts 40
Customizing Desktop 41
Uploading File 42

System Settings 42
File Manager (File Explorer) 44
Trash Bin 44
IoT Hub 44

Home Dynamic v2 Protocol 46
Cache Renderer 47

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Utilities 47

Build in WebApps 47
Music 47
Video 49
Photo 49
PDF Viewer 50
NotepadA 51
Others 51

System Architecture 51
ArOZ Virtual File System 51

Introduction 51
ArozOS VFS Functionality 52
Example Usage in Golang 52

Upload and Download 53
File Upload into the System 53

Problems of Uploading in low memory systems 53
Solutions 53

File Upload using AGI File Write API 54
File Download from the System 54

Get Mime of FIle 54
Downloading via Share Interface 54
Bandwidth Compression 55

Programming Interface 55
ArOZ Gateway Interface Programming 55

Startup Loader 55
Internal Access 56

Executing Gateway Script 56
Passing Parameter to Gateway Script 56

External Access 57
WebApp Programming 58

WebApp Startup Modes 58
WebApp Registration Script (init.agi) 58
User Interface Programming 60
Receiving File Descriptor Pointer 61

Manual Parsing of File Descriptor Pointer 61
ao_module Wrapper Parser 62

Creating Backend Calls with AGI script 62
Calling Other System Services / Functions 63

IME Programming 63
SubService Programming 64

ao_module.js Function Wrapper 66
Example Usage 66

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Function Override 67
Scope of Application 68
Compatibility and Updates 68

Application Categories 69
Introduction 69
Interface Modules 69
IME (Input Method Editor) 71

ArozOS Culture 73
Mascot 73

Original ArOZ Mascot 73
Error Message Icons 73

ArozOS Mascot 75

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Introduction

Aim and Objective of the project
Many off-the-shelf cloud services and infrastructure are only designed for commercial or
business purposes. When it comes to non-profiting oriented or general purpose cloud
platforms, there are only limited choices for easy plug & play development.

The beta phase of this project aims to provide a low cost, personal and private cloud
architecture in both software and hardware aspects that is distributed with high scalability
and reliability for deploying critical systems.

In the 1.0 version of this system, the system architecture is being redesigned to fit more
general purpose cloud computing, including quick system deployment, service binding and
allowing general users to engage in cloud computing technology through a user friendly,
web desktop interface.

Naming Scheme

Stage Naming

ArOZ Online System (Originally named Automated Remote Operating Zigzagger, which
Zigzagger implies stitching things together in a good way) was a platform that is designed
to store multimedia files with an external hard disk on Raspberry Pi Model B, providing
“media center” like experience to users and allows for media consumption in local area
network environment. Later, more and more cloud related functions are added into the
system for better enhancing the usability of the system including but not limited to web
desktop environment, cluster setups and communication pipelines, distributed file
systems and in system programmable modules. These modules and subsystems add more
functionality to the cloud platform.

The Beta system (ArOZ Online Beta) is a system that provides all of the functions
mentioned above and delivers a web-desktop-like environment by bridging to the
underlying Linux file system. Providing a powerful cloud desktop environment for users to
be used with any mobile or desktop devices without the constraints of a designated
terminal device(s) like personal smartphones or laptops.

The 1.0 version (arozos) is a system that is completely rewritten based on the Beta phrase
requirement discovery process. Most of the well known functions on the beta are being
rewritten into a more efficient algorithm with Go instead of PHP. Providing much more
performance boost out of linux SBCs like the Raspberry Pis without the need for
upgrading the hardware.

Version Naming

The version system of the ArOZ Series software is as follows.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Version Name Development Date Systems (Language)

ArOZ (Alpha) Early 2014 Windows 7 (VB.net)

ArOZ Beta Late 2014 Windows 7 (VB.net)

ArOZ Omega Early 2015 Windows 7(VB.net)

ArOZ Online Alpha Late 2015 - Early 2016 Windows 7 (WAMP + PHP 5)

ArOZ Online Beta 2016 - 2020 Windows / Linux (Apache +
PHP 7)

ArOZ OS 2020 - Now Windows / Linux / Mac OS
(Go 1.14+)

Version Code

The ArozOS Version code is formatted as follows.
[unique identification number of branch].[major version number].[minor version
number]

The Unique Identification Number of Branch, or the UINB is the number where if a
developer fork the ArozOS and release it as his own project for alternative audience or
organization, this number has to be changed to prevent the user from mixing the
alternative branch from the main branch. In the main branch (source), the UINB will always
be 0 (Source of all sub-branches).

Examples version code in the main branches are:
v0.1.110 , v0.1.111 and v0.1.112

Release Code

The ArozOS release code follows the same version naming scheme as the Version Code but
without the UINB number. Examples are
v1.110, v1.111 and v1.112

System Usage
ArOZ Online System can be run on a portable device, miniature NAS system or server
grade computers. Hence, the system will suit the needs for many different usages,
including portable workstation, media conversion or consumption, data backups and
restore etc.

The arozos provides even more general purpose for business sector, including fully
featured authentication system, user permission and grouping systems, internal reverse
proxy services and storage pool management. Allowing the system to be used in deploying
web platforms that requires user management as well as user permission management.
Modular WebApp system design also strengthened the permission system and allowed
more secure cloud computing processes and web services.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Terminology
In this documentation, the following terminology will be used to describe the content and
functions provided in this system.

Term Explanation

Arozos / ArOZ OS The cloud system that is being discussed in this document.

WebApps Web application that is installed on the arozos as a folder in
the /web directory.

Subservice Web application that is installed on the arozos as a separated
binary located in its folder under /subservice directory.

Web Desktop Interface
/ VDI mode

Virtual Desktop Interface (Mode). The mode where the user is
interacting with the arozos through its web based desktop
user interface.

List Menu The application startup menu that used to start an application
on both VDI and mobile interface

FloatWindow (fw) Window-like iframe that is located on the web based desktop
interface that the user can drag, resize and hide.

Functio(nal) Bar The bottom bar of the web desktop interface that used to
display the web app opened by the user
OR
The sidebar of the mobile desktop mode where the webapp
opened by the user will be shown.

Status Bar The top bar on the web desktop interface that is used to show
the hostname, current date time and a content button for
showing shortcuts.

Arozfs / aroz virtual file
system

The virtualized file system that is emulated by arozos.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

System Requirement

Hardware
Minimal
1Ghz CPU (ARMv6/7, ARM64 or AMD64), 512MB RAM, 8GB Storage

Recommended
2+Ghz CPU (ARM7, ARM64 or AMD64), 2GB RAM, 32GB Storage

System Tested on:
- Raspberry Pi 3B+ w/ Raspberry Pi OS
- Raspberry Pi Zero W w/ Raspberry Pi OS
- Raspberry Pi 4B+ (1GB / 2GB / 4GB version) w/ Raspberry Pi OS
- Orange Pi Zero Plug (H5 CPU edition) w/ Armbian Buster
- AMD64 ThinClient w/ Debian Buster
- Ryzen 5 w/ Windows 10
- Intel Pentium w/ Windows 7

Software
Operating System:
Raspberry Pi OS / Debian Buster, (Limited functionality on Windows 7+ and macOS Catalina
+)

Package (Required):
Wpa_supplicant1 or nmcli2, net-tools (ifconfig3), FFmpeg4

Clients / Browsers
Any modern browsers (Latest version of Chrome / Firefox / Safari (Not Tested) / Edge) on
macOS High Sierra or above / Windows 7 or above

Network
Network Environment:
Network speed of Minimum 10Mbps (100Mbps+ Recommended), WiFi 2.4 / 5 Ghz or
Ethernet

4 FFmpeg is a large suite of libraries and programs for handling video, audio, and other multimedia
files and streams.

3 ifconfig is a system administration utility in Unix-like operating systems for network interface
configuration.

2 nmcli is a command-line tool for controlling NetworkManager and reporting network status.

1 wpa_supplicant is a cross-platform supplicant with support for WEP, WPA and WPA2 (IEEE 802.11i)

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

System Overview

Summary

Folder Structure

Arozos consists of three major components in its folder structure. The folder structure is
listed as follows.

Structure Name Location Purpose

Web ./web Directory for storing WebApp scripts (including
System GUI elements)

System ./system Directory for storing system folders. Databases,
templates and other important files are stored
here. This should not be exposed via the storage
pool handler.

Subservice ./subservice Subservice that mount to arozos. Allowing
arozos to perform reverse proxy access to these
web services binaries.

Arozos Binary ./arozos (or
arozos.exe)

The executable of the main logic of arozos
system

Data Structure

All the data stored in the ArozOS system are located in the following files

File Name Location Purpose

ao.db /system/ Main database for the ArozOS

storage.json /system/ Storage & Virtual File System configuration of
ArozOS system permission group

*.json /system/storage/ Storage & Virtual File System configuration of
non-system permission groups

cron.json /system/ Scheduler task configuration file

*.log /system/aecron/ Log file for system scheduler

authlog.db /system/auth/ Log file for authentication

Application Structures
As arozos move away from PHP, there is no way to dynamically add modules or plugins into
a pre-compiled binary. Hence, there are two new methods to add plugins into the system.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

1. WebApps - Basic WebApps where main logic is handled by JavaScript and RESTFUL
2. Subservices - Advance WebApps where the application require complex access to

the underlying operating system

In the following sections, the structure of the methods will be introduced. For details
about developing a plugin for arozos, please see the WebApp and Subservice sections.

WebApp Structures

Arozos Web Applications (or WebApps) are stored under the ./web folder. Each folder
contains a list of html, JavaScript and CSS files that can be served via the arozos internal
web server. A generic folder structure of a WebApp should consist of the following files.

Filename Purpose Mandatory

init.agi Define the WebApp startup properties Yes

index.html Index of WebApp to serve Yes

*/icon.png The icon for this module Yes5

*/desktop_icon.png The icon for showing as a desktop shortcut No

embedded.html The embedded mode UI Depends6

floatWindow.html The float window mode UI Depends7

manifest.json The required manifest for supporting PWA Recommen
d

Notes that the init.agi is mandatory and it must be placed under your WebApp roots (i.e.
./web/{webapp_name}/init.agi). Or otherwise, your WebApp will not be scanned by the
arozos startup process.

Subservice Structures

Subservice are web server binaries that are stored under ./subservice folder and provide
services that require much higher levels of complexity. A basic subservices contain the
following file structures.

Filename Purpose Mandatory

{subservice_name}_{platf
orm}_{architecture}

The binary of the subservice Yes

7 Mandatory when floatWindow mode is set to true in init.agi

6 Mandatory when embedded mode is set to true in init.agi

5 The image name can be defined in init.agi. See AGI section for more information.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

.disabled Flags to disable this subservice on startup No

.startscript Flags to load start script for registration
instead of the binary itself

No

moduleInfo.json The module information JSON Depends8

start.sh (or start.bat) The startup script that replace the -info flag in
subservice startup parameter

Depends9

Depending on your platform and subservice name the binary name may differ according.
For example, here is a subservice named “demo” with support linux (arm, arm64 and
amd64), MacOS(darwin) and Windows. Its binary files will look like this under Windows’ File
Explorer.

In some cases where glueing scripts are used, there might be a few more bash files or
extra binaries. In this case, you will need to assign suitable permission to these files before
starting arozos core. Permission denied of executing files inside subservice will lead to
failure of starting of arozos system.

9 Start script is required when .startscrpt flag file exists

8 If moduleinfo.json exists, the information will be loaded from file instead of the binary itself

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Abstraction Structure
The arozos system consists of many layers of complex abstraction for emulating an
operating system on any cloud platform or host devices. The following diagram provides
an abstract view of the system abstraction structure.

10

In simple words, the arozos structure is mainly consists of the following modules
1. Authentication System
2. Permission Router
3. Reverse Proxy Server
4. ArOZ Gateway Interface (AGI) JavaScript Interpreter
5. Network Services (SSDP / MDNS / UPNP)
6. Permission Group System
7. Storage Quota Management System
8. Storage Pool Management System (Including Path Virtualization)

10 This diagram is drawn with arozos version 1.105 as base. This diagram might not be up-to-date
with the latest arozos system.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

User Interface Structure
In arozos, the original “Grid Interface” introduced in Beta has been removed due to most
users will just directly launch into their Desktop interface. For that, a new interface is
introduced to replace the grid interface as the default interface module for mobile
devices. In the arozos UI implementation, the system default supports three kinds of UI.

1. Web Desktop Interface
2. Mobile Desktop Interface
3. Interface Module Interface

For beta version of aroz, the interface includes
1. Grid Menu Interface
2. Web Desktop Interface
3. Multi System Booting Interface (MSBI)

Web Desktop Interface

The arozos Web Desktop Interface is a complete rewritten of the original desktop
interface and provides better user experience compared to the Beta Desktop.

Arozos Web Desktop Interface preview, captured on v1.109 with 21:9 display

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

ArOZ Online Beta Web Desktop Interface, capture on Beta LTS

For basic usage, the Web Desktop supports creating new folders, uploading Files by drag
drop, double click opening files, folder or application shortcuts etc. See Desktop for more
information.

In arozos 1.0, a top menu is added to show time, volume info and Ubuntu 20.04, also
provide a notification bar as well as a quick dropdown function menu for access to quick
functions including full screen toggle, system settings and user logout.

Mobile Desktop Interface

Mobile Desktop Interface was first introduce in arozos 1.105 for supporting vertical
screens (Mostly mobile devices). In this mode, the floatWindow is still supported with
limited functions. The list menu and toolbar are also replaced with a sidebar instead.
However, this interface did allow multi-processing just like the standard Desktop interface.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

List Menu Tool Sidebar Opening Applications

Grid Menu Interface, Deprecated

The Grid Menu interface is a deprecated interface designed for ArOZ Online Beta (AOB)
users for using the system on mobile devices. It is also the first interface of the ArOZ
Online System that provides access to all system modules within one interface.

This interface is deprecated and no longer available on the arozos 1.0. This function has
been replaced by the List Men on the mobile desktop interface, and there is no method to
enable this feature in arozos 1.0.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

IMUS Multi System Booting Interface (MSBI / IMSB), Deprecated

MSBI is the original method for binding service together using a bootloader like system for
aroz online beta. It provides a very basic portal for redirecting users to different network
services within the same host environment.

For example, multiple of ArOZ Online Beta can be installed on the same machine using the
MSBI tool as the main router.

This interface has been deprecated and replaced by the subservice module (functional
wise) and permission group interface module settings (Selection wise). For more detail,
see the “Interface Module'' section.

System Modules

ArOZ Gateway Interface (AGI)
ArOZ Gateway Interface, or AGI, is an application programming interface that allows access
to arozos core system through a ECMA 5.1 scripting interface.

The interface can handle scripting files in file extension .js or .agi. See more application
and programming guidelines in the ArOZ Gateway Interface Programming section.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Advance Package Tool (APT)
Advance Package Tool, also known as apt, is a module that helps with installing packages
automatically on Linux based host systems that allow access to apt packages under sudo
mode. To use this module, one must request package access using agi script and run the
arozos in sudo mode.

Authentication (Auth)
System Authentication Module handles all the system authentications, including user
creation, login and removal, auto login token management and sessions etc. This module
also handles the external API authentication used in AGI interface.

Console
The STDIN / OUT console for arozos debug purposes. To enable the console, use ./arozos
-console=true flag during startup and after the web server is started, you can type debug
command into the STDIN of the arozos and allow real time access of internal runtime data
for debug purposes.

DO NOT ENABLE THIS FLAG WHILE STARTING WITH SYSTEMCTL

Database
The database handler for the arozos system. The database used in arozos is some kind of
key-value database that allow “bucket” creation. Just like a normal database, this module
provides a basic interface for reading, writing and checking if a bucket and key exists.

Disk

Diskmg

Diskmg provides the basic interface for handling disk management tools that has been
migrated from the aroz online beta to the latest arozos. This tool allows real time
in-system mount, unmount and format of external storage devices (or internal, if it is not
the primary disk).

For the disk manager function itself, you can access the function via System Setting >
Advance > Disk Manager

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Diskspace
DiskSpace is a disk scanning utility that helps you identify the information of the disk
remaining space. Similar to the Android space utility, you can see how much storage space
you have on your host devices.

This function can be accessed by System Setting > Disk and Storage > Disk Space

In theory, this utility works on all platforms that support the df command. On windows,
disk information is requested from WMIC.

DiskSmart

DiskSMART is a third party developed module that handles the status of the disk, including
disk health, disk information and more. This module is migrated from the previous ArOZ
Online Beta as one the few module that migrated to arozos during the early stage of
development.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

The Disk SMART utility can also be found under the Disk and Storage category of the
System Settings.

The BETA version of the Disk SMART can be find in System Setting > File & Storage > Disk
SMART

SortFile

SortFile is a newly added module that handles large file discovery throughout the arozos
mounted virtual storage devices. This module will scan all files within the user’s access
range and return a file list sorted by the largest (in storage size) to the smallest. The
interface can be accessed via System Setting > Disk & Storage as “Space Finder”.

Example screenshot of the space finder results

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Remarks

The Disk module currently does not have any code that is written directly under the
module Disk (imuslab.com/arozos/mod/disk).

File System
The File System module handles major file operations provided by the file_system.go in
the main programming scope. Including file operations like copy and paste, move,
buffered file copying, zipping etc.

The File System also contains code related to files like metadata extraction, thumbnail
generators and other sub-modules that help enhance the user experience in using arozos
file explorer. See the details of each module in the subsections below.

Hidden

This is a module that handles file / folder hiding under Linux or Windows. If the current
system is operating under a Linux -like environment, for a given path, it will add a “.” prefix
to the file to make it hidden. If the system is hosted under Windows, the file will be
requested to be hidden using WIN32 API.

This module is mainly used to hide the .cache and .trash folder under Linux / Windows
environment.

The example below shows a hidden cache folder rendered under Windows File Explorer

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Metadata

Metadata helps extract the thumbnail from a given file. This module binds different
services together and extracts cover from music files, ffmpeg to extract thumbnails from
video files and more. Each thumbnail should be in .JPG format and in 480 x 480 pixel.

The thumbnail of the extracted files will be stored inside the .cache folder which will then
be hidden by the hidden module using local file system methods.

Renderer

Renderer is a 3D rendering module that helps render .stl and .obj file’s thumbnail. Mainly
used in the metadata module as a rendering assistant.

The followings are some example renders generated by the file system renderer

File System (Core)

Virtual File System Handler

The file system also provides a very important function that creates a FileSystemHandler
object from a mounted device. A file system handler is a Go struct that contain the
following information (Captured from arozos v1.107)

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

type FileSystemHandler struct {

Name string

UUID string

Path string

Hierarchy string

ReadOnly bool

InitiationTime int64

FilesystemDatabase *db.Database

Filesystem string

Closed bool

}

The FileSystemHandler will handle the routing of arozos virtual file system translation
mechanisms and allow the abstraction above to access only virtualized resources within
the scope of the whole host OS. For more information, see ArOZ Virtual File System
section.

The virtual file system is created by mounting or real devices from /dev/sd* or any
directories within the host OS file system. To see how to create a virtual file system from
storage.json config file, see “Base Storage Management Architecture” section.

File Ownership Tracker

File ownership is tracked using the File System database. The database is an aroz key-value
database named “aofs.db” located at the root of the virtual file system mount point. To
access the file ownership from a given file path (absolute path), these functions can be
called:

func (fsh *FileSystemHandler) GetFileRecord(realpath string) (string,

error)

func (fsh *FileSystemHandler) DeleteFileRecord(realpath string) error

The function above will return the owner of the given filepath as string.

Device Mounting Handler

The file system module also provides a handy MountDevice function that can be used to
mount storage devices located under /dev/. To use this function, you can simply call to the
following function under the file system module:

MountDevice(mountpt string, mountdev string, filesystem string)

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Modules
Modules module handles module registration and launching. This module object keeps a
list of running modules and allows modules to be sorted, registered, listed, access its
launching parameters and more.

The following is a module’s information structure. For how to create a new module
registry, see ArOZ Gateway Interface Programming section.

type ModuleInfo struct{

Name string //Name of this module. e.g. "Audio"

Desc string //Description for this module

Group string //Group of the module, e.g. "system" /

"media" etc

IconPath string //Module icon image path e.g.

"Audio/img/function_icon.png"

Version string //Version of the module. Format:

[0-9]*.[0-9][0-9].[0-9]

StartDir string //Default starting dir, e.g. "Audio/index.html"

SupportFW bool //Support floatWindow. If yes, floatWindow

dir will be loaded

LaunchFWDir string //This link will be launched instead of

'StartDir' if fw mode

SupportEmb bool //Support embedded mode

LaunchEmb string //This link will be launched instead of

StartDir / Fw if a file is opened with this module

InitFWSize []int //Floatwindow init size. [0] => Width, [1]

=> Height

InitEmbSize []int //Embedded mode init size. [0] => Width,

[1] => Height

SupportedExt []string //Supported File Extensions. e.g. ".mp3",

".flac", ".wav"

}

Network
The network module handles all network related functions within the arozos system. Its
subservice are listed belows.

MDNS

MDNS provides software discovery of arozos using MDNS protocol. Allowing Mac devices
to find the hosting server.

SSDP

SSDP provides an advertising broadcast to nearby Windows hosts so the device can be
scanned via the Network Discovery tab.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

UPNP

UPnP provides a wrapper of the zero config settings that allow the host to request UPnP
port forward from the NAT router (if any). In the default scenario , the port that hosts the
web interface of the arozos will be forward when UPnP (allow_upnp flag) is set to true.

WiFi

The WiFi Module handles WiFI hardware management based on wpa_supplicant and nmcli
(Linux) or WMIC (Windows, Read Only).

Under Linux environment, this module provide access to
- WiFi Switching
- Connecting to new WiFi Ap
- Editing Connection Information

The setting interface can be see on the System Setting > Network tab

Reverse Proxy

The Reverse Proxy module is a clone of the ReverPxoy library from
github.com/cssivision/reverseproxy with modified error handler that allow arozos to
restart freezed subservice during a reverse proxy handling error .See subservice section
for more information.

Permission
Permission is a module that handles a user’s permission groups and its access permissions
to virtual file systems. A permission group consists of the following properties (under
arozos v1.107)

Properties Name Type Usage

Name String The name of this permission group

IsAdmin Boolean Do this group has admin privileges

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

DefaultInterfaceMod
ule

String The default interface module for all the
users in this group.

DefaultStorageQuota Int64 The default storage quota for user
initialize in this group

AccessibleModules String Slice All the module that is accessible by this
user

StoragePool *storage.StoragePool The storage pool that this permission
group is assigned to

parent *PermissionHandler The parent handler for this permission
group

The permission module is mainly used to handle user access to modules, control
permissions on reading and writing paths and more. The wrapper of this module can be
found in User > permissionHandler.go script.

Permission Router (Prouter)
Permission router is a simple interface to replace HTTP.HandleFunc with permission
control built in. Here is a quick example extracted from file_system.go showcasing how it
works.

router := prout.NewModuleRouter(prout.RouterOption{

ModuleName: "File Manager",

AdminOnly: false,

UserHandler: userHandler,

DeniedHandler: func(w http.ResponseWriter, r *http.Request) {

sendErrorResponse(w, "Permission Denied")

},

})

Example handle functions

router.HandleFunc("/system/file_system/validateFileOpr",

system_fs_validateFileOpr)

router.HandleFunc("/system/file_system/fileOpr", system_fs_handleOpr)

Quota Manager (Quota)
The quota manager is a module that manuage a user storage quota. It keeps track of all
file operations within the system (excluding files accessed by subservices). The storage
manager can be accessed via the user editing / group editing tool.

The quota manager also provides a graphical user interface for displaying a given user’s
storage quota and its file type classifications.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

The diagram might take time to load due to its heavy disk IO request.

Share
The share module handles all share request and file access request for shared file objects.
This module handles

- Share file creation
- Edit shared files
- Remove file share
- Serving shared files
- Keep track of all the shared item UUID and its real filepath

This module is also a special module that would handle its own UI file serving. The
following is an example of a shared file download interface for non-logged in users.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Other file types are also supported. For example, pdf, video and others

This module also handles share cleaning by removing the share UUID which the file that
the UUID points to no longer exists. When this event occurs, the File Not Found UI will be
served instead.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Storage
The Storage module handles most of the tasks related to storage pools and user storage
allocation functions.

Storage Pools

Storage Pools are a group directory on the host operation system that is assigned to a
certain user or permission group.

A storage pool is consists of a basic structure as follows

Key Type Usage

Owner String Owner of the storage pool, either a username
or group name

OtherPermi
ssion

string Permission on non-owner user / user group.
Using the same keywords as file system
handlers for permission management.

Storages []*fs.FileSystemHandler A list of usable file system handler under this
storage pool permission

FTP Storage

FTP Storage module provides access to the user roots and all his virtual storage root
through File Transfer Protocol. This module will create a folder inside the user root named
“ftpbuf” when FTP storage is enabled and the user tries to access his storage root using
FTP clients like Windows File Explorer or Filezilla.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

The FTP Server related settings can be found inside the Network > FTP Server tab inside
system settings.

If your ArozOS host is hosted behind a NAT router, you might also need to set up the
passive mode for your FTP server. In the lower part of the setting interface, enable Force
Passive Mode and enter your public IP address into the input box below the checkbox. This
will be automatically filled up if you have enabled ArozOS with UPnP.

Connecting FTP under Windows

To connect to the FTP server under Windows, open File Explorer and enter the ftp address
copied from the setting page into the address field. In this example, “ftp://localhost:2121”
was used.

Enter your aroz username and password to continue. After connection is established, you
will see your vroots shown in the file explorer. Note that the tmp folder will not be shown
under FTP server mode.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

WebDAV Storage

The WebDAV storage is an alternative network access method for ArozOS. WebDAV is
recommended to be used with TLS mode enabled. If TLS mode is not enabled, users can
still use WebDAV but some extra steps will be required on Windows.

To enable WebDAV server, visit System Settings > Network > WebDAV Server, scroll to
Basic Settings and enable the WebDAV Server via switching the button on.

The endpoint for your user account has been listed in the message box below. In the
default case, you should see a user root, a tmp folder and web if you are an administrator.

Setup WebDAV On Windows (Non TLS Mode)

Setting up WebDAV On Windows is a bit tricky for non TLS mode ArozOS system. First,
open “My Computer” > “Map Network Drive”
For the folder, enter the URL shown on the vroot you want to mount. In this example,
“http://localhost:8080/webdav/user” will be used.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

http://localhost:8080/webdav/user

DO NOT ENTER PASSWORD DURING THE FIRST CONNECTION

After the drive has been connected,you will see a blank, read-only folder mounted to your
device.

Now, move back to your System Setting Interface. Refresh the “WebDAV Server” tab or
click on the “Refresh List” button. You will see some new connection appears on your list
of “Access Pending Clients”

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Click “Allow Access”. The one you clicked will be moved to the table below showing that
you now grant access to these clients (aka File Explorer instants)

Finally, get back to your File Explorer and click on the refresh button. All your folder inside
your user root should be shown as follows.

Setup WebDAV On Windows (TLS mode)

Setting up WebDAV On Windows is a bit tricky for non TLS mode ArozOS system. First,
open “My Computer” > “Map Network Drive”

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

For the folder, enter the URL shown on the vroot you want to mount. In this example,
“https://localhost:8080/webdav/user” will be used.

Next, a login interface will pop up and ask for your username and password. Enter your
aroz username and password to proceed.

After connection is established, you will see your vroot folders inside the mounted drive.

Setup WebDAV On MacOS (TLS and non TLS)

To connect WebDAV server on MacOS, start Finder, click on “Go” → “Connect to Server”

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Next, enter the endpoint shown in the system setting page. In this example,
“http://localhost:8080/webdav/user” will be used.

If a security warning pops up in the case where you are using non-TLS mode, click accept
and continue.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

http://localhost:8080/webdav/user

Then, login with your aroz username and password.

After login, you will see a new mounted drive on your desktop and a Finder window shows
up with your vroot contents.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Subservices
Subservice is one of the methods of expanding the arozos cloud system with external
software. This module handles the mounting and reverse proxy automation for subservice
within the same host. For more details on how to program and set up a subservice, see
“Subservice Programming '' section.

User
The user module handles user permissions, storage pools and user account resolution
services. The userHandler object is the core of the whole arozos system and can be
requested to return the system database, authentication agent, permission manager and
other system components binded to this handler through public interfaces (As described
in the Object Orientation Programming architecture, in Golang’s term: Public Access
Functions (or even simpler, the functions start with capital letters)).

The user handler provide four main category of services
1. Directory Handlers (e.g. Handle virtual path to real path translation)
2. Permission Handler (e.g. Handle user permission checking)
3. Quota Handler (e.g. Handle user storage quota)
4. User Info Resolver (e.g. Handler get user information from request or username)

Note that no parts of this module is handling the user authentication, user creation or
permission group assignment. This is the top level module that binds everything together.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

System Components

Desktop
The Web Desktop system is one of the most iconic functions of the ArozOS system.
Featuring a full fledged Web Desktop experience with drag drop supports, you can do
most of your desktop routine on your ArozOS host just like what you would normally do on
your PC.

Creating New Files / Folder

To create a new file or folder on the desktop, right click the desktop on any place that has
no file. A context menu should show up afterwards. Select “New” → “Folder” or any new
type of files you want to create by clicking the target format types.

Creating Shortcuts

To create a shortcut, click New → Shortcut. A shortcut creation assistant should pop up
and you can choose to create a shortcut of one of the three type of objects in the system.

1. WebApp modules, any kind of modules or subversive installed on the system. Will
open that module once double clicked

2. Folder / Directory, any virtual path within the system that is accessible by the user
can be opened one double clicked on the shortcut icon.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

3. Website URL, any link will be open with a new popup window when double clicking
the shortcut icon

Once the shortcut is created, you will see a new icon popup on your desktop. The following
shows the shortcut of the IoT Hub and the Music folder shortcut.

Customizing Desktop

You can customize your desktop using the personalization option in the context menu or
use the “background” option of the context menu for a quick background swap. To change
the background wallpaper and the theme color, open the “Personalization” utility and set
the theme color and customize a folder for wallpaper image under the “Theme” and
“Advance” tab.

The following examples show a desktop with customized theme color and wallpaper

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Uploading File

To upload files to the desktop, simply drag and drop them to the location you want on the
desktop. It is also possible to download files from the desktop to local devices using the
drag and drop method. But this method is only supported on some versions of Chrome on
Windows.

System Settings
System Settings is a built- in module that allows users to adjust their system settings
through the Web UI without the need to enter the ssh terminal. You can easily change
settings on users, network services and even disk management in this easy to use
interface.

Storage Pool Management Interfaces / Windows

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Module Management Interface

Performance & Resources Monitor

Storage Management

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

File Manager (File Explorer)
File Explorer is another key element of ArozOS that allows easy and quick access to files
stored on your ArozOS host devices. File Manager supports drag drop upload, multi
thread upload, file operations liek copy, paste, move, zip, search and more.

File Operations between multiple windows

Context Menu of the ArozOS File Manager

Upload Display & Mechanism

When a user chooses to upload files from their local file system to the ArozOS through the
File Manager, an upload interface will show up in the bottom right corner indicating the
number of files uploading, pending and the progress of each file upload. The first value in
the display is the concurrent upload count. This indicates the number of files currently
uploaded to the server. The 2nd number is the pending number. It indicates the number of
files that are waiting to be processed.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Note that in the startup flag, there is an option to allow async file upload. This option is
only designed for servers with tons of RAM. Do not use it on Raspberry Pi or you will risk
the OS killing the ArozOS during runtime due to out of memory error.

Trash Bin
The trash bin works by creating a hidden trash folder within the trash root folder. Under
the root operation system, you can access the trash folder by <current_folder>/.trash/.
You might need to enable the “Show hidden folder” option on Windows hosts.

IoT Hub
The IoT Hub is a built- in WebApp that supports IoT Scanning ability through defined IoT
Scanners. The IoT Scanner is expandable in the system core and allows users to add in any
IoT device scanner if they know how it works. In the default situation, only the Home
Dynamic protocol and SonOff S2X scanner is included in the main system core.

Main Control Interface.
Names can be customized
using the edit button.

Device Properties tab,
showing the devices IP
address and UUID.

Device Action tab. This is
defined by the device
manager and the iot device.

To check which type or brand of IoT devices that your host system is supporting, you can
visit the system settings → Device and IoT → IoT Hub for a list of installed IoT device
managers.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

IoT devices can be accessed and controlled by agi script using JavaScript as the main
programming language. See the system example code and ArOZ JavaScript Gateway
Interface section for more information.

Home Dynamic v2 Protocol

The Home Dynamic v2 is the default IoT protocol for the ArozOS IoT Hub. It supports
ESP8266 based devices and allows it to be controlled over the local area network with no
security settings. To allow your ESP8266 device to be scannable by the ArozOS HDSv2
scanner, make sure to broadcast the required mDNS information using Dynamic Service
TXT Callback function in your ESP8266 code. Here is an example of such broadcast
callback.

void MDNSDynamicServiceTxtCallback(const MDNSResponder::hMDNSService

p_hService) {

//Define the domain of the HDSv2 devices

MDNS.addDynamicServiceTxt(p_hService, "domain","hds.arozos.com");

MDNS.addDynamicServiceTxt(p_hService, "protocol","hdsv2");

//Define the OEM written values

MDNS.addDynamicServiceTxt(p_hService, "uuid",getMacAddress());

MDNS.addDynamicServiceTxt(p_hService, "model","Generic");

MDNS.addDynamicServiceTxt(p_hService, "vendor","HomeDynamic

Project");

MDNS.addDynamicServiceTxt(p_hService, "version_minor","0.00");

MDNS.addDynamicServiceTxt(p_hService, "version_build","0");

}

For a full example, visit the Home Dynamic System repository at
https://github.com/tobychui/arozos.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

https://github.com/tobychui/arozos

Cache Renderer
The cache renderer is a system component used by the ArozOS File Manager for rendering
preview for the following file mime types

- Video (e.g. mp4, avi, webm)
- Audio (e.g. mp3, flac)
- Photo (e.g. png, jpg, gif)

The Cache Renderer outputs a cache image file located relative to the file being cached
will the path “.cache/{filename}.jpg” with a size of 480 x 480 pixel.

The Video cache rendering is based on FFmpeg and will extract the frame on the 5 second
mark as a preview image. If the video is shorter than 5 seconds, no preview will be
generated. This function requires FFmpeg to be installed on the Host System.

The Audio cache rendering is based on extracting the audio meta info and generating the
album art using the Golang jpeg library. The album art caching only works when there is a
valid image meta data inside the audio file. See the following library for more information.

● "github.com/dhowden/tag"

The Photo cache rendering is based on shrinking the original image to the desired cache
size. See the following library for further development

● "github.com/nfnt/resize"
● "github.com/oliamb/cutter"

Utilities
Utilities are modules that are hard coded into the system core. These utilities only exist
here for most basic file viewing purposes. Examples are Audio / Video file player etc.

Build in WebApps
The following showcase some preview of the build in WebApps

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Music

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Video

Photo

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

PDF Viewer

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

NotepadA

Others

System Architecture

ArOZ Virtual File System

Introduction

ArOZ Virtual File System or VFS is a file system abstraction that is designed to add a layer
of isolation between the host file system and the user file system that is accessible
through the web interface. This file system will not emulate any file or folder. Instead,

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

encase the scope of a particular folder as virtual root and provide access to the folder’s
content using virtual path. This ensures the user cannot directly interact with the host
Operating System and also reduces the complexity of the system for checking directory
escape or other common concern on serving file systems over networks.

ArozOS VFS Functionality

The ArozOS VFS provides file access through virtual paths. Virtual paths in the VFS looks
something like this

user:/Desktop/hello_world.txt

S1:/Video/test.mp4

Disk:/Files/foobar.md

The syntax of a VFS Path is denoted as follows.

{Storage ID}:/{Relative path to ID matching virtual root}

ArozOS VFS provides two main features in the Golang written module (and the core
system) that are included in the user module.

func (u *User) VirtualPathToRealPath(vpath string) (string, error)

func (u *User) RealPathToVirtualPath(rpath string) (string, error)

Virtual path is an abstraction of file path location within the VFS. Real path is the relative
path of that file to the ArozOS root or the host system root. The path returned is either
absolute or relative depending on the storage.json configuration of the storage folder.

For example, a file located in “./files/Alice/Desktop/test.txt” can be accessed by Alice using
her own account with the File Manager WebApp at “user:/Desktop/test.txt”. Under this
condition, the above two functions can help translate the path between realpath and
virtualpath based on the developer’s need.

Example Usage in Golang

Assume you have logged in as “User” and access the following function.

func handleGetDesktop(w http.ResponseWriter, r *http.Request){

userinfo, _ := userHandler.GetUserInfoFromRequest(w, r)

desktop, err := userinfo.RealPathToVirtualPath("user:/Desktop/")

log.Println(desktop)

//Should print out "./files/User/Desktop/"

}

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Upload and Download

File Upload into the System

Problems of Uploading in low memory systems

When uploading to a system with very little RAM, for example 512MB of the Raspberry Pi
Zero W, the /tmp folder fills up really quickly and leads to either the arozos process being
killed or the whole system freezes and no longer accepts external requests and
connections. Hence, an alternative solution for upload has to be developed and bypass the
default pipeline that Golang handles uploads by default which is writing to the RAM
before writing to disk.

Solutions

File uploading to the system mainly uses two endpoints written in the core of the ArozOS
File System handler.

/system/file_system/upload

/system/file_system/lowmemUpload

In most cases, only one of them will be used in the same period of time through the File
Manager webapp. In the current implementation of the File Manager upload protocol, the
File Manager will enter low memory mode when the system memory in the Host OS is less
than 3.8GB (Corrected for conversion of 4GB memories). However, the backend will not
shut down the default upload handling endpoint if the system memory is less than
threshold. Uploading to the low memory endpoint is just the decision made in developing
in the File Manager to provide a stable and robust file upload experience for the host with
ultra low memory.

The standard upload interface uses FORM posts with file type input to handle file upload
like a normal online form. It uses XHR API for uploading and real time upload progress can
be observed on the user interface. This method will first buffer the file into memory (as
well as page if it exceeds the system memory limit of upload, which can be configured
using startup flags). This method is suitable for hosts with relatively more memory like a
small linux server with 4GB of RAM or a Windows Server with 8GB of RAM or above.

The alternative to the standard upload interface is the low memory upload interface,
which utilizes websocket to perform data upload. The process of the low memory upload
interface behaves as follows.

1. The file selected is split into 512KB chunks
2. WebSocket connection to server is opened
3. One chunk is written into the socket, and wait for the host to finish writing to disk
4. Repeat step 3 until all the chunks write finished
5. Host merge the chunks into one file and move to the final destination on disk

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

This method of upload is significantly slower and computational intensive compared to the
traditional upload mode. If possible, use the default upload API instead of the low memory
upload mode unless strictly necessary.

File Upload using AGI File Write API

An alternative method to upload files into the system is using AGI FIle Write API for writing
text based data into the ArozOS File System. Here is an example for creating and writing
to a file with given” filepath” and “content” as variables.

//Write to the file

var succ = filelib.writeFile(filepath, content);

if (!succ){

error("Unable to save file");

return

}else{

sendResp("OK");

return

}

This method is only suitable for small, text based files. Developers can also utilize this API
to write base64 encoded binary files like images and sound files but it is not
recommended.

File Download from the System

FIle downloading from the system all goes through the /media endpoint. To access a
particular file with your account, access the following endpoint.

/media/?file=user:/Desktop/music.mp3

/media/?file=user:/Desktop/music.mp3&download=true

The download parameter tells the host server to serve the file with the
“Content-Disposition” header and attach the filename of the target file with the
responses.

Get Mime of FIle

To get the mime of the file, you can access the getMime endpoint listed below.

/media/getMime/

The required parameters are as same as the download endpoint and will return the Mime
type of the file in plain/text format.

Downloading via Share Interface

The sharing interface allows public or other users to access a particular file or directory
within your file system. The API for this access is located at /share/.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

You can pass in the “download” parameter and “serve” parameter for the host to return
the target file with a given type of response headers. Examples are as follows.

The following link will serve the file to the client with the “Content-Disposition” header
which will set the download filename and pop up a download dialog in the browser.
http://localhost:8080/share?id=21b7cae0-4a5a-4f36-834e-54a02e3ede77&download=true

The following link will start serving the file in streaming mode. The browser can playback
the file (if it is supported) or popup a download dialog if the browser does not have a
suitable player for the shared file format.
http://localhost:8080/share?id=21b7cae0-4a5a-4f36-834e-54a02e3ede77&serve=true

Bandwidth Compression

ArozOS built in with gzip compression turned on. If you want to disable the compression,
set the gzip flag to false.

Programming Interface

ArOZ Gateway Interface Programming
ArOZ JavaScript Gateway Interface, A(J)GI for short, is a programming interface based on
the otto engine, allowing ECMAscript v5 to be used to interact with the ArozOS core
functions written in Golang. The access methods are separated into two types. The
following are the explanations of the access gateway.

Startup Loader

The ArozOS startup script with AGI will load the WebApp startup script from the WebApp
root folder. The startup script name must be named “init.agi” that contains a module
registration system call within the script in order for the module to be loaded into the
ArozOS host successfully. Here is a minimum example for the init startup script extract
from the Dummy module.

//Define the launchInfo for the module

var moduleLaunchInfo = {

Name: "Dummy",

Group: "Interface Module",

IconPath: "Dummy/img/small_icon.png",

Version: "0.1",

StartDir: "Dummy/index.html"

}

//Register the module

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

http://localhost:8080/share?id=21b7cae0-4a5a-4f36-834e-54a02e3ede77&download=true
http://localhost:8080/share?id=21b7cae0-4a5a-4f36-834e-54a02e3ede77&download=true

registerModule(JSON.stringify(moduleLaunchInfo));

For more examples, see the WebApp programming section.

Internal Access

To access the AGI internally, your application can create an AJAX request to the AGI
endpoint located at "/system/ajgi/interface"

Executing Gateway Script

To use the gateway, developers can call to the ao_module_agirun inside the ao_module.js
wrapper. The definition of the function is as follows.

function ao_module_agirun(scriptpath, data, callback, failedcallback =

undefined, timeout=0)

Where the scriptpath is the script file location relative to the web root (aka ./web folder
inside the src folder)

Here is an example request of the interface made from the FFmpeg Factory WebApp

function readStorage(key, callback = undefined){

ao_module_agirun("FFmpeg Factory/backend/readConfig.js", {key: key},

callback)

}

Passing Parameter to Gateway Script

To pass parameters to the AGI script, you should create an JSON object and put it in the
“data” field of the ao_module_agirun function call. Here is an example of sending
parameters to the AGI script extracted from FFmpeg Factory WebApp.

function saveStorage(key, value, callback = undefined){

ao_module_agirun("FFmpeg Factory/backend/writeConfig.js", {

key: key,

value: value

}, callback)

}

This acts similar to your JavaScript variable definition in the AGI script. Before your AGI
script loads, the Otto VM will inject the above two variables to the runtime environment
using its key as the variable name. To access the injected variable in your AGI script, you
can directly access the “key” and “value” parameters as follows.

if (newDBTableIfNotExists("FFmpeg Factory")){

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

if (writeDBItem("FFmpeg Factory",USERNAME + "_" + key,value)){

//Do something here

}

}

External Access

To access the AGI externally from subservice domains, you need to create a GET request
to the "/api/ajgi/interface" endpoint.

To authenticate against the ArozOS authentication agent, you also need to pass in a POST
parameter with key: "token" that is set to the user access token with the user request.
During a user request a page from the subservice domain, the request header will be
injected with two new parameters

Header Key Value Usage

aouser ArozOS Username The user authentication
username

aotoken Token The one time token for
subservice to request AGI
interface

The subservice should use the token embedded into the request header for accessing the
AGI using external requests. Here is an example section of code for getting the username
and token from the header in Golang

username := r.Header.Get("aouser")

token := r.Header.Get("aotoken")

To execute a AGI script remotely, create a FORM POST and request it to the interface as
follows.

resp, err := http.PostForm(a.restfulEndpoint,

url.Values{"token":{token}, "script":{script_content}})

if err != nil {

// handle error

return nil, err

}

To process the returned results from AGI, you can read the response body just like
retrieving other FORM results as follows.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

bodyBytes, err := ioutil.ReadAll(resp.Body)

if err != nil {

log.Println(err)

w.Write([]byte(err.Error()))

return

}

resp.Body.Close()

//Do something with bodyBytes

For a full example, please see the demo subservice repository.

WebApp Programming
ArozOS used standard HTML5 WebApp structures. Developers no need to be forced to use
any programming tools / nodejs library when developing the ArozOS WebApps.

A WebApp is on ArozOS system has the following properties
1. Its root folder is completely inside the./web folder.
2. It use only HTML5, JavaScript (and its framework) and CSS, with backend powered

by AGI system written in ECMAscript
3. Included the ao_module wrapper in the head section of the starting HTML file

WebApp Startup Modes

An ArozOS WebApp can be started up in 3 different modes, sometime 4 modes (depending
on developer support)

1. Native Mode (Opening the WebApp endpoint directly in a browser window)
2. Float Window Mode (fw mode, opening WebApp on Web Desktop Environment

window)
3. Embedded Mode (Opening WebApp on Web Desktop Environment with a file

descriptor pointer)
4. (Optional) PWA mode, Android Progressive WebApp support with Google

framework

WebApp Registration Script (init.agi)

The init.agi script is used to define the startup parameter of the current WebApp. It must
be located at the root path of the module itself. The module register script can be used to
define the following module properties:

- WebApp name
- WebApp startup mode (Native, Float Window and Embedded)
- WebApp icon
- WebApp default window size
- WebApp type and meta information
- WebApp supporting file extensions

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

The definition of init.agi supports a JSON object to be imported for handling the module
registration. In the source code, you can find such section of code that define the key value
of such JSON object structure

type ModuleInfo struct {

Name string //Name of this module. e.g. "Audio"

Desc string //Description for this module

Group string //Group of the module, e.g. "system" /

"media" etc

IconPath string //Module icon image path e.g.

"Audio/img/function_icon.png"

Version string //Version of the module. Format:

[0-9]*.[0-9][0-9].[0-9]

StartDir string //Default starting dir, e.g.

"Audio/index.html"

SupportFW bool //Support floatWindow. If yes, floatWindow dir

will be loaded

LaunchFWDir string //This link will be launched instead of

'StartDir' if fw mode

SupportEmb bool //Support embedded mode

LaunchEmb string //This link will be launched instead of

StartDir / Fw if a file is opened with this module

InitFWSize []int //Floatwindow init size. [0] => Width, [1] =>

Height

InitEmbSize []int //Embedded mode init size. [0] => Width, [1] =>

Height

SupportedExt []string //Supported File Extensions. e.g. ".mp3",

".flac", ".wav"

}

Here is an example extracted from the Music module for how to register a module in
init.agi script.

var moduleLaunchInfo = {

Name: "Music",

Desc: "The best music player in ArOZ Online",

Group: "Media",

IconPath: "Music/img/module_icon.png",

Version: "0.1.0",

StartDir: "Music/index.html",

SupportFW: true,

LaunchFWDir: "Music/index.html",

SupportEmb: true,

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

LaunchEmb: "Music/embedded.html",

InitFWSize: [475, 700],

InitEmbSize: [360, 240],

SupportedExt: [".mp3",".flac",".wav",".ogg",".aac",".webm",".mp4"]

}

//Register the module

registerModule(JSON.stringify(moduleLaunchInfo));

The above example will register one module named “Music” with two mode: FloatWindow
mode (defined by “SupportFW” parameter) and Embedded Mode (defined by
“SupportEmb” parameter). The results of the size definition are shown in the screenshot
below.

(Left: FloatWindow mode, Right: Embedded Mode)

Note that an invalid init.agi startup script file or in the case where the startup file doesn’t
exist, the module will not be loaded and will be ignored during the startup process.
However, its content located in the web root folder will still be accessible using direct URL.

User Interface Programming

The interface programming for ArozOS WebApps is standard HTML5 with JS and CSS.
A basic WebApp can be a simple HTML5 Website that does not need to interact with the
system functions. If specific functions are required like changing Float Window title,

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

setting resizable or opening a new Float Window within the WebApp, see ao_module.js
system wrapper for more information.

Receiving File Descriptor Pointer

The ArozOS system sends file descriptors using URL hash. Here is an example of the hash
which one file being sent to another WebApp module using the file descriptor pointer.

#%7B%22filename%22%3A%22test.txt%22%2C%22filepath%22%3A%22user%3A%2FDesk

top%2Ftest.txt%22%7D

There are two ways of receiving files sent by the ArozOS system services including the
Desktop and File Manager. Manual parsing or calling to the ao_module_wrapper.

Manual Parsing of File Descriptor Pointer

To access the original value of the hash, you can perform the following conversion in
JavaScript (Front end)

JSON.parse(decodeURIComponent(hash))

For the example above, you will see the following output.

You can also generate the same hash using the reverse operation as the decode option.
For example

var a = {

filename: "test.txt",

filepath: "user:/Desktop/test.txt"

}

var hash = encodeURIComponent(JSON.stringify(a));

console.log(hash);

Will return the hash value of the file descriptor object

"%7B%22filename%22%3A%22test.txt%22%2C%22filepath%22%3A%22user%3A%2FDesk

top%2Ftest.txt%22%7D"

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

The hash generated then can be used in calling the new floatWindow API for opening in
system components like File Manager.

ao_module Wrapper Parser

The ao_module wrapper also provides a convenience API for parsing the file input. You can
call the following functions for returning if there are input files. The returned value is a
JavaScript array of file descriptor pointers.

var files = ao_module_loadInputFiles();

** The function will return null if there is no input files* *

If your module can only handle one file at most, you can simply take the first file from the
returned value.

Here is a short example extracted from the Video module.

var playbackFile = ao_module_loadInputFiles();

//Only handle one file

playbackFile = playbackFile[0];

if (playbackFile == null){

return

}

Creating Backend Calls with AGI script

A WebApp on ArozOS can create backend operations through the ArOZ JavaScript
Gateway Interface (AGI). For interface structure related documentation, see “ArOZ
Gateway Interface Programming” section.

To create a backend request using AGI, call the agi_run function in ao_module as follows.

ao_module_agirun(scriptpath, data, callback, failedcallback =

undefined, timeout=0)

The parameter required are as follow

Item Name Usage Value Example

scriptpath The agi / js script location you want to
run from the web root

"demo/backend/hello_wor

ld.js"

data The data you want to send with the
request

{"name" : "FooBar"}

callback The callback when the process is
finished on the server side

function(data){

console.log(data);

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

}

failedcallback The callback when the request is failed function(){

alert("Oops");

}

timeout The timeout for the AJAX request 3000

The above example with the following AGI script will result as follows.

(Content of ./web/demo/backend/hello_world.js)

sendResp("Hello World to " + name);

(Console Output)

"Hello World to FooBar"

See Appendix “Aroz Javascript Gateway Interface API” and “Aroz JavaScript Gateway
Interface Script Example” for more information.

Calling Other System Services / Functions

If you need to interact with the system / Web Desktop framework, see ao_module.js for all
the possible system call functions.

IME Programming
IME (Input Method Editor) is a special type of WebApp that runs on ArozOS that behaves
like a native Input Method Editor. IME is a common software installed on computers that
its users do not use English as their primary language. IME programming cannot be done
using ao_module and it has to be done via direct interaction to the desktop.system.

To register the ime keydown handler, check and set the desktop windows’ window.ime
properties as follows.

if (ao_module_virtualDesktop){

if (!parent.window.ime){

alert("This version of ArozOS does not support IME

function!")

}else{

parent.window.ime.handler = handleKeydownInput;

}

}

And for the handleKeydownInput function, it is just a generic function that handles
keydown events.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

function handleKeydownInput(e) {

//handle e.keyCode here

}

To send out the processed text, you can send it to the target pointed by the
window.ime.focus object. Here is an example of sending text to the focused DOM
element.

var text = "你";

if (parent.window.ime && parent.window.ime.focus != null){

insertAtCaret(parent.window.ime.focus, text);

}

Where the insertAtCaret function is a generic function for inserting text to an DOM
element (e.g. textarea). Here is an example implementation of such a function.

function insertAtCaret(target, text) {

var txtarea = target;

if (txtarea == undefined){

return

}

var scrollPos = txtarea.scrollTop;

var caretPos = txtarea.selectionStart;

var front = (txtarea.value).substring(0, caretPos);

var back = (txtarea.value).substring(txtarea.selectionEnd,

txtarea.value.length);

txtarea.value = front + text + back;

caretPos = caretPos + text.length;

txtarea.selectionStart = caretPos;

txtarea.selectionEnd = caretPos;

txtarea.focus();

txtarea.scrollTop = scrollPos;

}

SubService Programming
Subservices are applications that run under the ArozOS core as a child process (in host
operating system perspective) and as a reverse proxy target (in ArozOS perspective). The
subservice will get started when the ArozOS core starts. The start procedure can be
simplified as follows.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

1. List all directories under the “subservice” folder.
2. For a given subservice folder found:

a. Check if the folder contains a file named “.disabled”. Continue if the given
file is not found.

b. Check if the folder contains a file named “.startscript”. Go to step 3 if the
file does not exist. Go to step 4 if the file exists.

3. Check if the binary for the specific platform exists. (Following golang
runtime.GOOS with {subservice_name}_{os}_{arch}, example: demo_linux_amd64)

a. If yes, start with the -info flag. The subservice should return a JSON parsed
module configuration to the ArozOS core.

b. If JSON is parsed correctly, start the binary with a passed in listening port
and parent request endpoint. If not, skip this subservice.

4. Check the runtime platform of the host operating system.
a. Read the module launch information from the “moduleInfo.json” file. Skip

starting if the file read failed.
b. If the platform is Windows, try to start “start.bat” inside the folder. Skip

starting if failed.
c. If the platform is Linux or MacOS, try to start “start.sh” inside the folder.

Skip starting if failed.
5. Register the module to the internal module list. Continue to the next subservice.

Startup Loader Information

The startup loader can be passed into the ArozOS core using one of the two methods
listed below.

1. Return as JSON string in STDOUT when receive the -info startup flag
2. A “moduleInfo.json” file that contain the startup loader JSON string

The startup loader JSON string is identical to the startup loader in the AGI scripting
interface - startup script. Here is an example of the moduleInfo.json file, extracted from
the syncthing module template.

{

"Name":"Syncthing",

"Desc":"Open Source Continuous File Synchronization",

"Group":"Download",

"IconPath":"syncthing/assets/img/favicon-sync.png",

"Version":"1.5.0-rc.2",

"StartDir":"syncthing/#",

"SupportFW":true,

"LaunchFWDir":"syncthing/#",

"InitFWSize":[1200,670]

}

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

If your subservice decides to launch with the first method, simply serve the above JSON
text in STDOUT when receiving the flag -info. These two startup methods will serve the
exact same startup results.

ao_module.js Function Wrapper
Ao_module.js is the main front end function wrapper for all the ArozOS Web Apps.
Functions include adjustment of floatWindow size, editing of floatWindow properties and
interaction with ArozOS custom events handler like the IME and more. These functions can
be called within a module after you have included the function wrapper. The function
wrapper can usually be found under web/script/ao_module.js.

Example Usage
The following example is extracted from the Dummy Module, whose parent directory is
located at the same root with the script folder.

<script src="../script/jquery.min.js"></script>

<script src="../script/ao_module.js"></script>

Be noted that the ao_module wrapper must be included within the current HTML script
using relative path. Absolute path will not work due to some implementation within the
ao_module that requires the relative location of the script to the current script to be
known.

To execute ao_module functions, simply call the function name. Most ao_module functions
come with a “prefix ao_module”. Here are some examples.

var flist = ao_module_loadInputFiles();

ao_module_openFileSelector(fileLoader, "user:/Desktop/",type="new",true,

{

defaultName: "New File.txt"

})

Not all ao_module functions are included in the global scope. For example, some utilities
functions are included with their own objects. Here are a few examples of these functions.

var fileinfo = ao_module_utils.getDropFileInfo(dropEvent);

ao_module_utils.getRandomUID();

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

See the ao_module function list appendix for a full list of ao_module functions usable in
your webapp.

Function Override
It is possible for the user to overwrite some of the ao_module functions in order to
implement custom features from the desktop and web app interaction. One of the most
commonly used overrides is overriding the ao_module_close() api with a custom one to
provide a save check. Here is an example extracted from the Notebook module for
showcasing the override implementation.

//Overwrite the close sequence

function ao_module_close(){

if (!isSaved()){

//Not saved

if (confirm("Some changes are not saved. Save before exit?")){

saveText(function(){

//Exit after save

closeThisWindow();

});

}else{

//User request not to save

closeThisWindow();

}

}else{

//Saved. Exit

closeThisWindow();

}

}

function closeThisWindow(){

if (!ao_module_virtualDesktop){

window.close('','_parent','');

window.location.href = ao_root +

"SystemAO/closeTabInsturction.html";

return;

}

parent.closeFwProcess(ao_module_windowID);

}

You can notice that the override function is directly called to the desktop internal function.
This is necessary in this case as function overriding must directly interact with the
desktop.system internal function and this should be the only case when developing an
ArozOS WebApp that directly calls to the internal funcstion of the desktop interface.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Please be noted that the mobile interface contains only a subset of the desktop internal
function. Hence, not all desktop internal functions can be used in the mobile interface.

Scope of Application
The ao_module script is designed to be used inside an iframe under virtual desktop mode
for desktop or mobile interface. If you try to call it under standard viewing mode (as a
normal webpage), most of its functions will not behave as expected to deal with the
dependencies of the wrapper to the desktop interface script (desktop.system and
mobile.system). This rule also applies to multiple layers of iframes within your web apps
module. If your mobile cannot avoid using an iframe, and ao_module is expected to work
with an iframe , please consider directly implementing the function in the top most script
of your webapp and access it with

parent.{function name}()

instead of trying to use ao_module within the iframe nor directly interfacing with the
desktop.system or mobile.system program sope.

Compatibility and Updates
Using ao_module as the main programming interface will guarantee system compatibility
in the future 5 versions of the ArozOS system. Deprecated API will start to log out a
deprecated message if the API will be removed 5 or more versions ahead.

DO NOT TRY TO DIRECT INTERACT WITH THE FUNCTIONS IN DESKTOP.SYSTEM AND
MOBILE.SYSTEM. ANY COMPATIBILITY ISSUE USING THIS INTERACTION METHOD WILL
NOT BE ENTERTAINED THROUGH ISSUES OR SUPPORT.

If you have any specific requirement regarding the API of ao_module, please directly email
us for your requested enhancement.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Application Categories

Introduction
WebApps and subservice within ArozOS are categorized according to their type of usage.
However, there are a few special categories that do not lie within the standard categories.
Here is a list of such categories that the system will treat differently.

Interface Modules
Interface module is a special class of module that can be acted as the first default module
to handle user access and also act as something like “Kiosk” mode of Chromium or Firefox.

An interface module can also support other opening methods including floatWindow and
embedded mode. Here are two example of Interface Modules

Each user permission group will have 1 default interface module. By default, Desktop is
the default interface module for the administrator group. Once a user is set to use a given
interface module, the user will be directed to that interface module once logged in.
Making that interface module “full screen”.

Desktop as interface module → User login and will be redirected to Desktop

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

Management Gateway as interface module → User login and will be redirected to
Management Gateway WebApp

For users that are inside two permission groups with different interface modules, a
selection interface will popup and request for choosing the target interface. Here is an
example of a user that is inside two permission group that is setup as follow

Permission Group Name Interface Module Is Admin

Default Desktop false

Manager Management Gateway false

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

To update the interface module setting, go to Permission Group → Edit → Default
Interface Module and select the target module from the dropdown list.

IME (Input Method Editor)
IME is another type of special category that they are specialized for handling inputs and
modifying the output of keystrokes. This feature is added in v1.113 for experimental
purposes.

When IME startup, it will hook its input handler to the window.ime object on the
desktop.system. This will allow ao_module included webapps to handle input using the
handling pipeline and send keydown events to the specific input methods.

Here is an example of the input method Cyinput that uses the pipeline to input Cantonese
into the Notebook webapp.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

IME can also send output strings to
desktop input or textarea

IME behaves similarly on shortcut and
floatWindows events.

To see how to bind events to support IME, see IME (Programming) section.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

ArozOS Culture

Mascot

Original ArOZ Mascot

The ArozOS Mascot is a character reused from the legacy ArOZ Online Beta system which
also reused one from the old ArOZ Project from ArOZ Online Omega. The designer of this
character is unknown and through remix of the original character’s facial expression and
clothes, the first error message was designed to provide interesting feedback to user
when they see errors in the ArozOS system.

Error Message Icons

Here is a list of in-use error message icon of the ArozOS

Already logged in warning

This error occurred when a user already
logged in wanted to login with an auto
login token.

Generic Error Message

This error image will be shown when there
is a generic error situation.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

No Interface Module

This error occurred when a user’s interface
module setting was corrupted and cannot
be accessed.

200 OK

200 OK Alternative

This message will show when the request
is processed without error but the user is
not supposed to see this page. This page
sometimes also shows as invalid
configuration’s default information page.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

ArozOS Mascot

Since ArozOS v1.110 release, a new version of the mascot has been designed and allows a
much more grown up version of the fox girl to be displayed throughout the later
developed modules and documentation.

The following image shows the full version of the illustration in postcard format, which is
designed to celebrate the official release of the first ArozOS stable version.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

END OF DOCUMENTATION

ArozOS Cloud Desktop Operating System Documentation
Written by Toby Chui, since 2016, All information provided in this document is for reference only.

